Manganese superoxide dismutase attenuates Cisplatin-induced renal injury: importance of superoxide.

نویسندگان

  • C A Davis
  • H S Nick
  • A Agarwal
چکیده

Cisplatin is a potent chemotherapeutic agent that is used to treat many human malignancies. Unfortunately, in addition to side effects such as ototoxicity, anaphylaxis, and bone marrow suppression, a significant percentage of patients receiving cisplatin develop severe nephrotoxicity. Mitochondrial dysfunction that is mediated via the generation of reactive oxygen species has been implicated in the pathogenesis of cisplatin-induced renal injury. To address the mechanism, it was hypothesized that overexpression of antioxidant enzymes, such as mitochondria-localized manganese superoxide dismutase (MnSOD) or mitochondria-targeted catalase (mito-Cat), would be cytoprotective in cisplatin-induced cell injury. To this end, human MnSOD or a mito-Cat vector were stably transfected into human embryonic kidney 293 cells. Cells that overexpressed MnSOD exhibited significantly less cell rounding and detachment compared with both mito-Cat and vector controls after exposure to 20 microM cisplatin. Cell injury as assessed by DNA fragmentation and annexin V binding assays was significantly decreased in the cells that overexpressed MnSOD compared with vector alone and mito-Cat. In addition, elevated levels of MnSOD were strongly associated with increased clonogenic potential after cisplatin challenge. Thus, overexpression of MnSOD, and not catalase, protects against cisplatin-induced renal epithelial cell injury. These results demonstrate the importance of reactive oxygen species in the mechanism that underlies cisplatin-induced renal injury and specifically implicate the superoxide radical, and not hydrogen peroxide, as the mediator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of reduced manganese superoxide dismutase in ischemia-reperfusion injury: a possible trigger for autophagy and mitochondrial biogenesis?

Excessive generation of superoxide and mitochondrial dysfunction has been described as being important events during ischemia-reperfusion (I/R) injury. Our laboratory has demonstrated that manganese superoxide dismutase (MnSOD), a major mitochondrial antioxidant that eliminates superoxide, is inactivated during renal transplantation and renal I/R and precedes development of renal failure. We hy...

متن کامل

miR-23a Regulates Cardiomyocyte Apoptosis by Targeting Manganese Superoxide Dismutase

Cardiomyocyte apoptosis is initiated by various cellular insults and accumulated cardiomyocyte apoptosis leads to the pathogenesis of heart failure. Excessive reactive oxygen species (ROS) provoke apoptotic cascades. Manganese superoxide dismutase (MnSOD) is an important antioxidant enzyme that converts cellular ROS into harmless products. In this study, we demonstrate that MnSOD is down-regula...

متن کامل

Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo

BACKGROUND Nephrotoxicity is the major side effect in cisplatin chemotherapy. Previously, we reported that the ginsenosides Rk3 and Rh4 reduced cisplatin toxicity on porcine renal proximal epithelial tubular cells (LLC-PK1). Here, we aimed to evaluate the protective effect of ginsenosides Rk3 and Rh4 on kidney function and elucidate their antioxidant effect using in vitro and in vivo models of ...

متن کامل

Reduction of paraquat-induced renal cytotoxicity by manganese and copper complexes of EGTA and EHPG.

Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potentia...

متن کامل

Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts.

Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 2001